62-x^2=4x^2

Simple and best practice solution for 62-x^2=4x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 62-x^2=4x^2 equation:



62-x^2=4x^2
We move all terms to the left:
62-x^2-(4x^2)=0
We add all the numbers together, and all the variables
-5x^2+62=0
a = -5; b = 0; c = +62;
Δ = b2-4ac
Δ = 02-4·(-5)·62
Δ = 1240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1240}=\sqrt{4*310}=\sqrt{4}*\sqrt{310}=2\sqrt{310}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{310}}{2*-5}=\frac{0-2\sqrt{310}}{-10} =-\frac{2\sqrt{310}}{-10} =-\frac{\sqrt{310}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{310}}{2*-5}=\frac{0+2\sqrt{310}}{-10} =\frac{2\sqrt{310}}{-10} =\frac{\sqrt{310}}{-5} $

See similar equations:

| -4(t-3)-(t+5)=2 | | 5*9*8+6x=5x*8 | | 2x+59=2x+23 | | 2+0.1x-0.15x^2=0 | | 5+6x=7+2 | | 7x+9x-9=120+8x | | 10w-9+7w=-18 | | 3(2x-3)+2=8+x | | -15x–5x=20 | | x/2=7=3 | | +0.1x-0.15x^2=0 | | -15v–5v=20 | | -x^2-14x-13=O | | f14+f25=f42+f18 | | 2z/7+8=-3 | | 4(1.5c+6)-2c=20 | | 7w+5=82 | | 8x-8x=7x | | 27/x+1=9/2 | | 8t–8=7t | | 2(4-3x)+12=7x-5(14) | | 2(4-3x)+12=7x-5(2x*7) | | 42-x=18 | | 0=(11+-2x)(8.5+-2x) | | x+(x+9,000)=68,000 | | (1-x+1)^2=0 | | 2(4-3x)+12=7x-5(2x7) | | 15+6y=33 | | 3x+5=223 | | 1/2x+5=3/4x-2 | | 6y-8=3(2y+5) | | 3x+2x(x+2)=20-(2x-5) |

Equations solver categories